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Abstract
In this paper we present a study of the phase diagram and critical properties of the square-lattice
quantum XY model, with a single-ion anisotropy and spin S = 1, as a function of the
anisotropy parameter D. For D less than a critical value DC, which is the critical point for a
quantum phase transition at T = 0, the model presents a Berezinskii–Kosterlitz–Thouless
(BKT) transition. This region is adequately described by the self-consistent harmonic
approximation. We show that, if we want to use a Schwinger boson theory in this region, we
should include fluctuations around the mean-field approximation (which leads to a gauge field)
to describe correctly the BKT transition. However both methods are inadequate to describe the
large-D phase, and we show that this phase can be studied using the bond operator formalism
which gives the correct behaviour for the correlation length as a function of the temperature in
the critical point and above. Our results agree with scaling arguments.

1. Introduction

In the last decade considerable interest has been concentrated
on quantum phase transitions (QPT). These transitions occur at
zero temperature when a nonthermal parameter like pressure,
chemical composition or magnetic field is varied [1, 2]. The
effects of quantum criticality, different from the classical case,
might be observed at high temperatures. This is, in many
cases, the signature of a quantum critical point might extend to
high temperatures. QPT are believed to provide keys to many
new and exciting phenomena in condensed matter physics [3]
and thus it is important to study the problem analytically.
So far, only the simplest, and the most obvious cases have
been studied in detail. One model where QPT can be well
understood is the two-dimensional anisotropic quantum XY
model described by the following Hamiltonian:

H = J
∑

〈n,m〉
(Sx

n Sx
m + Sy

n Sy
m)+ D

∑

n

(Sz
n)

2, (1)

where 〈n,m〉 represents the sum over nearest neighbours on
the sites, n, of a regular lattice and 0 � D < ∞. We consider
the antiferromagnetic case given the present importance of this
model. However, the Hamiltonian (1) is invariant under the

transformation J → −J , and a shift of the Brillouin zone
k → k + π . Due to the form of the single-ion anisotropy
we should have S > 1/2 and so we take S = 1. For D
less than a critical value DC, the system has a thermal phase
transition at a temperature TBKT, the Berezinskii–Kosterlitz–
Thouless temperature. This is another reason why this model
is so interesting to study. This phase transition is associated
with the emergence of a topological order, resulting from
the pairing of vortices with opposite circulation. The BKT
mechanism does not involve any spontaneous symmetry-
breaking and emergence of a spatially uniform order parameter.
The low-temperature phase is associated with a quasi-long-
range order, at finite temperature, with the correlation of the
order parameter decaying algebraically in space. Above the
critical temperature the correlation decays exponentially. This
picture is applicable to a wide variety of two-dimensional
phenomena [4]. A recent experiment in a trapped atomic
gas [5] not only confirms the BKT theory in a new system,
but also reveals for the first time the role played by local
topological defects or vortices.

For strong planar anisotropy in the Hamiltonian (1) we
have the so called large-D phase. This phase consists of
a unique ground state with total magnetization Sz

total = 0
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Figure 1. Phase diagram of the model described by the
Hamiltonian (1) as a function of the anisotropy parameter D and
temperature T . The solid line in region (1) describes the BKT
transition. There is a quantum phase transition at T = 0, D = DC.
Region (2) is the critical region where ξ ∝ T −1. There is an energy
gap above the ground state for D > DC.

separated by a gap from the first excited states which lie in the
sectors Sz

total = ±1. The elementary excitations are excitons,
with S = 1 and an infinite lifetime at low energies. For small
D the Hamiltonian (1) is in a gapless phase well described
by the spin wave formalism. The increase of the anisotropy
parameter D reduces the transition temperature and at DC the
phase vanishes. Thus, at DC the system undergoes a QPT, at
T = 0, from a gapless to a gapped phase.

The phase diagram for the Hamiltonian (1) is expected to
be as shown qualitatively in figure 1. In the continuum limit the
Hamiltonian (1) is equivalent to the Hamiltonian describing the
quantum rotor model and the phase diagram for this model was
studied by Phillips [6], using the mean-field approximation.
The solid line in figure 1 represents the line of critical points,
determined by the BKT transition, that terminates at the critical
point DC. Below this line, the inverse correlation length, ξ−1,
vanishes. The mean-field theory, however, fails to give the
BKT transition. The dashed line represents a crossover from
the quantum critical region (where ξ−1 ∝ T ), to a region where
quantum fluctuations dominate (ξ−1 � T ). The aim of the
present paper is to study the phase diagram of figure 1, using
several methods.

The region D � DC has been well studied in the
literature [8]. Starting with the Villain representation [7]:

S+
n = eiφn

√
(S + 1/2)2 − (Sz

n + 1/2)2,

S−
n =

√
(S + 1/2)2 − (Sz

n + 1/2)2e−iφn ,

(2)

using the semi-classical approach, taking the continuum limit
of the Hamiltonian, and using a self-consistent harmonic
approximation (SCHA) to take into account thermal and
quantum fluctuations, the region D � DC in figure 1 was well
described. The calculation is presented in [8]. The existence,
nature, and the location of the transition was reasonably well
established. The critical point was estimated as DC = 3.6. An
interesting fact is that the BKT transition can not be correctly

obtained when we use only the harmonic Hamiltonian, since,
as was said before, it is caused by topological excitations
(unbinding of vortex–antivortex pairs) [9]. However, the
behaviour of the spin correlation function is correctly given by
the harmonic Hamiltonian using the expression:

〈(Sx
0 Sx

r + Sy
0 Sy

r )〉 ≈ 〈[S(S + 1)− (Sz
r )

2]〉〈cos(ϕ0 − ϕr )〉
= 〈[S(S + 1)− (Sz

r )
2]〉 exp

[− 1
2 〈(ϕ0 − ϕr )

2〉]. (3)

This happens because in (3) we have effectively bypassed the
higher order perturbative theory.

In section 2 we present the Schwinger boson (SB)
representation for Hamiltonian (1), and show how fluctuations
around the mean-field approximation lead to a BKT transition.
In section 3 we study the large-D phase and in section 4 we
present our conclusions.

2. Schwinger boson representation

In this section we use the Schwinger boson representation,
introduced by Arovas and Auerbach [10], to study the
Hamiltonian (1). This formalism has been shown to be
very successful in describing magnetism in various quantum
systems. Qualitatively correct results are mostly obtained even
in the mean-field approximation. As pointed out by Timm and
Jensen [11] there are basically two reasons why the Schwinger
boson mean-field theory (SBMFT) works well even in low
dimensions: (i) since the bosonized spin degrees of freedom
are integrated over in the functional integral, spin fluctuations
are taken into account and (ii) the approach does not constitute
an expansion around an ordered state, and thus works for both
ordered and disordered ground states. Some papers where
the SBMF was used to treat anisotropic models are listed
below. The thermodynamic properties of the quantum X X Z
model were studied by De Leone et al [12] in one dimension
and by Fukumoto [13] in two dimensions. However, the
model treated by these authors, where an exchange anisotropy
is present, does not have a large-D phase. Cheng et al
[14] studied the persistent spin current in an anisotropic spin
ring (X X Z model) penetrated by a SU(2) flux. Jiang et al
[15] considered the effect of single-ion anisotropy on the
Heisenberg antiferromagnetic chain and Xing et al [16] treated
the field-induced transition in the antiferromagnetic chain with
single-ion anisotropy in a transverse magnetic field. Here
we treat, for the first time, the XY model with a single-ion
anisotropy.

In the Schwinger boson representation [10, 17] the spin
operators Si are replaced by the bosons ai and bi at each site i
as follows:

S+
i = a+

i bi , S−
i = ai b

+
i , Sz

i = 1
2 (a

+
i ai − b+

i bi),

(4)
with the constraint that only 2S bosons can occupy each site:

a+
i ai + b+

i bi = 2S. (5)

We assume that the lattice is bipartite and that there is
no frustration. On one sublattice we make the unitary
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transformation a → −b, b → a, i.e., S+ = −ab+, etc. Now
we write (1) as:

H = −1

2

∑

〈i, j〉
(a+

i a j bi b
+
j +ai a

+
j b+

i b j)+ D

4

∑

i

(a+
i ai −b+

i bi )
2.

(6)
Following [12] we introduce the bond variables

Ai j = a+
i a j + b+

i b j , Bi j = ai b j + bi a j , (7)

and rewrite the Hamiltonian (6) as

H = − 1
4

∑

〈i j〉
(A+

i j Ai j + B+
i j Bi j)

+ D

2

∑

i

(a+
i ai a

+
i ai + b+

i bi b
+
i bi)

+
∑

i

λi(a
+
i ai + b+

i bi − 2S), (8)

where the constraint on the number of bosons is enforced
by the Lagrangian multiplier λi . In writing (8) we have
neglected constant terms. Using a path integral representation,
we perform a Hubbard–Stratonovich transformation [10] using
the bond variables Ai j and Bi j , and the on-site coupling P =
〈a+

i ai〉 = 〈b+
i bi〉. We chose Ai j , Bi j , and λi to be static and

assume the spatially uniform values A, B and λ respectively.
In the mean-field approximation, following the steps presented
in [12] we obtain the saddle point equations:

(
S + 1

2

)
= 1

2N

∑

k

Rk

ωk
coth

(
βωk

2

)
, (9)

A = 1

4N

∑

k

γk

[
1 − Rk

ωk
coth

(
βωk

2

)]
, (10)

B = 1

4N

∑

k

γk Tk

ωk
coth

(
βωk

2

)
, (11)

P = D

8N

∑

k

Rk

ωk
coth

(
βωk

2

)
, (12)

where

Rk = γk Az + λ− 2P, Tk = γk Bz,

γk = 1

z

∑

δ

ei	k·	δ,
(13)

and

ωk =
√

R2
k − T 2

k . (14)

Here z is the coordination number and 	δ indexes the nearest
neighbours. From equations (9) and (11) we obtain

P = D

4

(
S + 1

2

)
. (15)

Following [13] we assume that part of the magnons
are condensed at k = π . To take into account the Bose
condensation we replace the point k = π with a parameter
mx and write equation (9) at T = 0 as:

(
S + 1

2

)
= mx + 1

2

(
I0 + I1

2

)
, (16)

where

In = 1

π2

∫ π

0

∫ π

0

γ n
k d	k√

1 + γk
. (17)

We find, for S = 1,mx = 0.94. This parameter mx has a
meaning of a long-range order parameter and the long-range
order lies in the xy-plane.

Defining λ̃ = λ− 2P = λ− 3D/4, where we have taken
S = 1, we find that our results are similar to the ones for the
isotropic XY model with a renormalized λ̃ parameter. Since,
for this model [13], A ≈ B , we will take A = B and write the
magnon frequency as

ωk = λ̃
√

1 + ηγk, (18)

where η = 2Az/λ̃. Numerical calculations give η = 1, λ̃ = 4.
Thus the SBMFT gives results similar to the ones obtained
using the linearized spin wave theory. The correlation length
ξ calculated using the SBMFT is finite for T > 0, even in the
case D = 0, and therefore the theory cannot predict the BKT
transition, and neither the critical point DC.

Now we try to understand the limitations of the SBMFT.
In a path integral formalism, as discussed by Tsvelik [18], we
can write

a = √
2S exp[i(ψ + ϕ)/2] cos(θ/2),

b = √
2S exp[i(ψ − ϕ)/2] sin(θ/2).

(19)

Tsvelik has shown that using the above representation,
the Heisenberg antiferromagnetic model maps into the
nonlinear sigma model with the topological term. The
transformation (19) is equivalent, in the semi-classical limit,
and in a path integral formulation, to the Villain representation
(in the classical limit). Considering this result, the question
is: why the SBMFT has failed? We try to answer this question.
One way to improve the mean-field calculation is to include the
fluctuations around the mean-field result. So, in the following,
we will consider the effects of these fluctuations.

The action for the Hamiltonian (8) is given by [10, 12]:

S =
∫ β

0
dτ

{
1

2

∑

i

[a+
i (τ )∂τai(τ )− ∂τa

+
i (τ )ai(τ )

+ b+
i (τ )∂τbi(τ )− ∂τb

+
i (τ )bi(τ )]

+
∑

〈i, j〉
[4(A+

i j Ai j + B+
i j Bi j)

+ (A+
i j Ai j + A+

i j Ai j + B+
i j Bi j + B+

i j Bi j)]
+

∑

i

λi(a
+
i ai + b+

i bi − 2S)

}
, (20)

where τ is the imaginary time and we have here, for simplicity,
considered the isotropic XY model.

When we ignore the fluctuations of A, B and λ the
excitations around the zeroth-order mean-field state are free
bosons. This leads to the SBMFT discussed above [10]. In
the following we will consider the effects of fluctuations in A,
B and λ which describe the collective excitations above the
mean-field ground state. Here, we will only consider the phase
fluctuations ai j around the mean-field solution as follows:

Ai j = Ãe−iai j , Bi j = B̃e−iai j . (21)

3
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Taking the above expressions into equation (20) it is easy to
see that the action is invariant under the gauge transformation:

ai j → ai j + (θi − θ j), ai → ai e
iθi , bi → bi e

iθi .

(22)
Let us review briefly the concept of local gauge invariance
in quantum electrodynamics. A change of gauge in a
charged field ψ , coupled to the electromagnetic field, means
a change of phase given by ψ̃ = exp(iα)ψ . To preserve
invariance one notices that in electrodynamics it is necessary to
counteract the variation of α with the position r, by introducing
the electromagnetic field Aμ which changes under a gauge
transformation as

Ãμ = Aμ + 1

e
∂μα, (23)

where e is a constant, taken as the electron charge. The
details can be found in any book of quantum field theory.
The situation in equations (21) and (22) is somewhat similar
to Abelian electrodynamics [19] and we can identify the field
aμ with a vector potential. Notice that here we have a lattice
gauge field where (θi − θ j) replaces ∂μθ . The ‘charged
particles’ of this two-dimensional gauge field can be associated
with the ‘vortices’ of the XY model which interact through a
logarithmic potential. As was shown by Minnhagen [20], a
two-dimensional gas of Coulomb particles interacting through
a logarithmic potential has a BKT transition. Thus we have
shown that when we consider the fluctuations around the mean-
field ground state the SB theory leads to the correct picture.

3. Large-D phase

Up to now we have shown that, for D < DC, the SCHA
gives reliable results for the phase diagram, and that we should
include fluctuations in the SBMFT to get the correct results in
this region. However, both methods fail for D > DC, and at the
critical point, D = DC, for T > 0. Of course we could map the
2D quantum model into the 3D classical model [21], but this
procedure gives information only at T = 0. The large-D phase
is best studied using the bond operator formalism proposed by
Wang and Wang [22] for S = 1, where three boson operators
were introduced to denote the three eigenstates of Sz :

|1〉 = u+|v〉, |0〉 = t+
z |v〉, | − 1〉 = d+|v〉, (24)

where |v〉 is the vacuum state. Although a mean-field
approximation is also used here the method predicts correctly
a quantum phase transition. In the low D region the bond
operator method gives results equivalent to the linearized spin
wave theory. As pointed out by Lu et al [23] the starting point
in the bond operator formalism is the large-D limit. Thus we
can see why the method seems more appropriated to describe
the strong coupling regime. For the Hamiltonian (1) the self-
consistent equations presented in [22] become

μ = z

π2

∫ π

0

∫ π

0

γk d	k√
1 + yγk

coth

(
βωk

2

)
, (25)

2(2 − t2) = 1

π2

∫ π

0

∫ π

0
d	k

[
1√

1 + yγk
+ √

1 + yγk

]

× coth

(
βωk

2

)
, (26)

ωk = (−μ+ D)
√

1 + yγk, (27)

where y = 2zt2(−μ + D)−1. The value of DC, where the
energy gap goes to zero, obtained using the bond operator
method is DC = 5.72. This value is larger than previous
estimates. We believe that this value is more reliable, since the
method used here is more suitable to treat the large-D phase.

Here we concentrate only in new results presented
below and refer the reader to [22] for more details. At
low temperatures the integrals in the above equations can
be evaluated analytically using the procedure presented by
Takahashi [24]. Using

ω(x) = 2

N

∑

k

δ(x − γk), (28)

we find
∫

d	k
(2π)2

1√
1 − yγk

coth

(
βωk

2

)

= I0 + Tω(1)

D̃
ln

[
T 2

D̃2(1 − y)

]
, (29)

∫
d	k
(2π)2

γk√
1 − yγk

coth

(
βωk

2

)

= I1 − 12ω(1)ζ(3)

(
T

D̃

)3

, (30)

where D̃ = −μ + D and ζ(x) is the zeta function. Using the
above expressions and a little algebra we find for the gap at
D = DC

� = ωk=π ∝ T . (31)

So, the inverse correlation length scales linearly with
temperature, in agreement with the analysis of scaling
dimensions at a quantum critical point [1]. Directly above
DC, the dynamics are controlled by thermal fluctuations. This
regime is referred to as quantum critical. In this regime, quasi-
particle excitations are not well defined. For D > DC, the
correlation length reach a finite value as T → 0, leading to a
quantum paramagnetic ground state with no long-range order.
As D approaches DC from above, the energy gap vanishes as
� ∝ (D − DC), also in agreement with scaling arguments [1].

We have also solved equations (25) and (26) numerically,
and obtained

� = 1.22(D − DC), (32)

at T = 0, and

� = �0 + c1T 1/2 exp(−c2/T ), (33)

for D > DC. Here c1 and c2 are constants which depend on
D. The ground state, as expected, has a gap, and nonzero T
induces an exponentially small density of thermally excited
excitons. Equation (33) has the same form as the one presented
by Sachdev [1] for the Ising chain in a transverse field in
the quantum paramagnetic side. This confirms the universal
behaviour of the model studied here.
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4. Conclusions

For D less than a critical value DC (which is the critical point
for a quantum phase transition at T = 0) the model described
by the Hamiltonian (1) presents a Berezinskii–Kosterlitz–
Thouless (BKT) transition. This region is adequately described
by the self-consistent harmonic approximation. We have
shown that, if one wants to use a Schwinger boson theory
to study this region, one should include fluctuations around
the mean-field approximation (which leads to a gauge field)
to describe correctly the BKT transition. Finally, we have
shown also that the large-D phase can be best studied using
the bond operator formalism, which is more suited to this phase
and gives the correct behaviour for the correlation function as
a function of the temperature in the critical point and above.
We have a crossover from the quantum–critical region where
� ∝ T , to the disordered regime where quantum fluctuations
dominate. Thus, to explain the phase diagram of the model, for
all positives values of D, we have to use different methods.
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